EXAM I Physics 208 SPRING 2013

Name.....Section Number.....

USEFUL INFORMATION

For two point particles

$$ec{F}=rac{1}{4\pi\epsilon_0}rac{q_1q_2}{r^2}\hat{r}$$

 $Volume \quad of \quad a \quad sphere = \frac{4}{3}\pi r^3$

Area of a sphere = $4\pi r^2$

$$d\vec{r} = dx\vec{i}_x + dy\vec{i}_y$$

$$d\vec{r} = dr\vec{i}_r + rd\theta\vec{i}_\theta$$

PLEASE DO NOT SPEND TIME DOING NON-TRIVIAL INTEGRALS

Only integrals like $\int kx^n dx$ are considered trivial

1.

2

3,

4,

1. (25 points) A positive and a negative charge are fixed on the x axis as shown.

What would be the total force exerted by these charges on a third positive charge, q placed at the point $x=0,\,y=-b$?

2. (25 points)An amount of charge Q is uniformly distributed along a circle of radius R which lies in the x, y plane. The center of the circle is at the origin. Find the electric field produced by the circle of charge at a point on the z axis given by x = 0, y = 0, and z = L. Hint: You might start by figuring out the direction of \vec{E} at the point on the z axis.

Find the electric field produced by the circle of charge at a point on the z axis given by x=0, y=0, and z=L if instead of the charge being uniformly spread over the circle there was a nonuniform charge per unit length on the circle given by $\lambda(\phi)=\lambda_0\cos^2\phi$ where λ_0 is a constant.

3. (25 points)A solid sphere of copper has been given a charge Q. The sphere has radius R. The electric field is measured and found to be zero inside the sphere and given by $|\vec{E}| = \frac{Q}{4\pi\epsilon_0 r^2}$ outside the sphere. Here r is the distance from the center of the sphere and the direction of \vec{E} is radially out.

Find the difference in the electric potential between a point a distance 3R from the center of the sphere and a point at the center. Which point has the higher value of the electric potential?

4. (25 points) Consider a cubical surface, L on each edge. The bottom is in the x, z plane and the back corner is at x = B.

There is an electric field present given by

$$\vec{E} = c_1 x \vec{i}_x + c_2 y \vec{i}_y + c_3 x \vec{i}_z.$$

Here c_1, c_2 , and c_3 are known constants. a. Find the flux of \vec{E} through the right hand (dotted) surface.

b. Find the flux of \vec{E} through the front (shaded) surface.