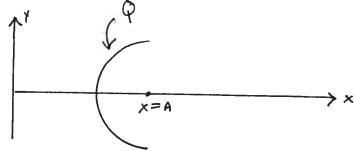
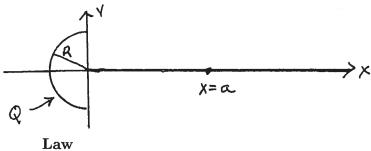

1. (25 points) Three charges are placed as shown.



The distances a and b are known. The charge at the origin is known and negative, $-q_1$. The charge q_2 at x=0,y=b is unknown. The charge q_3 at x=a,y=0 is unknown. What must be the unknown charges q_2 and q_3 if the electric force on a positive charge q_4 at x=a,y=b is to be zero?

Law

Application


2. (25 points)An amount of charge Q is uniformly distributed along a semi-circle of radius R whose center is a distance A from the origin. What point charge would have to be placed at the origin so that the electric field at the center of the semi-circle would be zero?

Law

Application

3. (25 points) An amount of charge Q is uniformly distributed along a semi-circle of radius R whose center is at the origin. Find the electric potential function at the point x=a assuming the value of the electric potential at infinity is zero.

Application

Result What is the value of the electric potential you found above for the special case where a=0?

4. (25 points) Suppose the force exerted on a point test charge q_0 by a point charge Q was given by

$$\vec{F} = C \frac{q_0 Q}{r^6} \hat{r}$$

where, just like in the Coulomb force, r is the distance between the points, \hat{r} is along the line from one point to the other and C is a positive, known constant. The force is repulsive for these two positive charges. Find the flux of \vec{E} corresponding to this force for a surface which is a sphere of radius R with center at the origin. Also find the difference in the electric potential difference between a point 2R from the origin and a point infinitely far from the origin.

Law

Application