## EXAM I Physics 208 SPRING 2016

Last Name......First.....Section Number.....

## **USEFUL INFORMATION**

For two point particles

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$Volume \quad of \quad a \quad sphere = \frac{4}{3}\pi r^3$$

Area of a sphere = 
$$4\pi r^2$$

$$d\vec{r} = dx\vec{i}_x + dy\vec{i}_y \qquad \qquad d\vec{r} = dr\vec{i}_r + rd\theta\vec{i}_\theta$$

## PLEASE DO NOT SPEND TIME DOING NON-TRIVIAL INTEGRALS

Only integrals like  $\int kx^n dx$  or  $\int \sin\theta d\theta$  or  $\int \cos\theta d\theta$  are considered trivial

*l* .

2.

3.

4.

1. (25 points) Two charges are fixed at the positions shown.



The distances a and b are known. The charge at the origin is negative.  $-q_1$ . The charge  $q_2$  at x=a,y=b is positive. Find the force that would be exerted on a charge  $q_3$  if it were placed at an arbitrary point x,y.

Law

2. (25 points) The is a charged semi-circle of radius R. From  $\theta=0$  to  $\theta=\frac{\pi}{2}$  there is a charge  $Q_1$  uniformly distributed. From  $\theta=\frac{\pi}{2}$  to  $\theta=\pi$  the charge is not uniformly distributed but instead the charge per unit length is a function of  $\theta$  given by  $\lambda(\theta)=\lambda_0^2$ . Find the electric field at the center of the semi-circle.



Law

3. (25 points) A positive point charge,  $Q_1$ , is located at the origin and a negative point charge,  $-Q_2$ , is located at x=a,y=b. Find the difference in the total electric potential function at the two points x=0,y=2b and x=0,y=-2b.



Law

4. (25 points) A cube with sides of length a is located with one corner at the origin. First find the flux of  $\vec{E}$  through the shaded side of the cube if the electric field is given by

$$\vec{E} = \alpha x^2 \vec{i}_x + \beta y^2 \vec{i}_y$$

where  $\alpha$  and  $\beta$  are known constants. Then find the flux through the shaded side of the cube—if the electric field is given by

$$\vec{E} = \alpha y^2 \vec{i}_x + \beta x^2 \vec{i}_y$$



Law