EXAM I Physics 208 Fall 2018

USEFUL INFORMATION

For two point particles

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$d\vec{r} = dx\vec{i}_x + dy\vec{i}_y \qquad d\vec{r} = dr\vec{i}_r + rd\theta\vec{i}_\theta$$

Do not spend time trying to evaluate integrals more complicated than

$$\int U^n dU.$$

For Graden

2.

3.

4,

1. (25 points) Three point charges are fixed at the positions shown on a semi-circle of radius R.

The charge at θ_1 is q_1 . The charge at θ_2 is q_2 . Both q_1 and q_2 are known and positive. The charge on the x-axis is known and negative, $-q_3$. Find the force that would be exerted on the known, positive charge q_4 located at the center of the semi-circle.

Law

2. (25 points) There is a charge Q uniformly distributed along the x axis from x=-a to x=+a. Find the electric field at the point x=S,y=0, where S is larger than a.

Law

3. (25 points) Suppose the force exerted on a point test charge q_0 by a point charge Q was given by

 $\vec{F} = C \frac{q_0 Q}{r^6} \hat{r}$

where, just like in the Coulomb force, r is the distance between the points, \hat{r} is along the line from one point to the other and C is a positive, known constant. The force is repulsive for these two positive charges. Find $V_1(\vec{r})$, the electric potential function corresponding to this force as a function of x and y if the charge Q_1 were located at the origin. Find $V_2(\vec{r})$, the electric potential function as a function of x and y if the charge Q_2 were located at x = a, y = b. Find the total electric potential function if both charges are present.

Law

4. (25 points) A surface which has the shape of a block is located with one corner at the origin. The dimensions of the surface are shown below. Find the flux of \vec{E} through the surface of the block if the electric field is given by

$$\vec{E} = \alpha x \vec{i}_x + \beta y \vec{i}_y$$

where α and β are known constants. If there is no charge contained within the block, how must α and β be related, assuming they are non-zero?

Law