EXAM III Physics 208 2014

Last NameSection Number.....

USEFUL INFORMATION

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

$$d\vec{B} = \frac{\mu_0 i}{4\pi} \frac{d\vec{s} \times \vec{r}}{r^3}$$

$$\frac{d\vec{r}}{dt} = \frac{dx}{dt} \vec{i}_x + \frac{dy}{dt} \vec{i}_y = \frac{dr}{dt} \vec{i}_r + r \frac{d\theta}{dt} \vec{i}_\theta$$

$$\oint \vec{E} \cdot d\vec{r} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{S}$$

$$C = \frac{Q}{V} = \frac{A\epsilon_0}{d} \qquad R = \rho \frac{l}{A}$$

$$\int \vec{B} \cdot d\vec{S} = \pm Li$$

$$\oint \vec{B} \cdot d\vec{r} = \mu_0 i_{enclosed}$$

١,

2,

3.

Caution: You must define any variable, such as i and Q, preferrably on a figure. Failure to do so will result in the loss of a large amount of credit!

4

1. (25 points) A very long, straight wire lies along the z axis. It has a circular cross section of radius R. It carries a current i uniformly spread over the cross section flowing in the +z direction. The center of the wire is located at the origin. Find the components of the magnetic field for all x and y.

Law

2. (25 points) A very thin wire lies in the x, y plane. It has the shape shown below consisting of two circular segments, centered at the origin, connected by segments radially out from the origin. It carries a current i as shown below. Find the magnetic field at the origin.

Law

3. (25 points) Two parallel, resistance free rails lie in the horizontal plane and are a distance W apart. The are connected by a resistance free wire at one end. A rod, mass m and length W is placed at rest on the rails at the point defined to be x=0. A magnetic field is turned on which points perpendicular to the rails in the direction shown. The strength of the magnetic field increases with time according to $B(t) = B_0 \alpha t$ where α and B_0 are known constants. What force would you have to apply, starting at t=0, in order for the rod to remain at rest? (Ignore self inductance.)

B= B(+) 8

4. (25 points) There are two concentric, spherical conducting shells. The smaller one has inner radius A and the larger one has inner radius B. Both have thickness T. The inner one is given a charge Q_0 . A very small resistor, R, is connected from the inner to the outer with a switch that is closed at time t=0. Find the charge on the inner shell as a function of time ignoring any self inductance. You should assume that because the resistor is so small, all charges will be distributed with spherical symmetry all the time.

Law