1. (20 Points) There are three vectors, \vec{A} , \vec{B} and \vec{C} . The vectors \vec{A} and \vec{B} have known lengths A and B. The vector \vec{A} lies along the x axis and \vec{B} is at the known angle θ shown below. What must be the components of the vector \vec{C} in order for the sum of the three vectors to be zero? Law or Definition **Application** 2. (30 Points) A block is attached to the wall by some complicated spring-like device. It starts at the point x=A at time t=0 moving to the right with a velocity whose magnitude varies with time according to $v(t)=c_1t-c_2t^2$ where c_1 and c_2 are known constants. How far will it travel before starting back to the left? Law or Definition **Application** Result 3. (25 Points) This problem is continued in Problem 4. Two robots are placed at rest in the horizontal x,y plane: robot #1 at the point (A,B) and the robot #2 at the point (C,D). At t = 0 they begin to move. The first robot moves with a constant, known acceleration of magnitude k, for a known amount of time t_0 seconds, along the line at the known angle θ shown below. After t_0 seconds it has zero acceleration. Find its x and y coordinates at the time $t = t_0$ and its x coordinate as a function of time for any time greater than t_0 . Y (C,0) Law or Definition Application 4. (25 Points) (The figure is shown in problem 3.) The second robot has an acceleration given by $\vec{a}_2 = \alpha t \vec{i} + \beta t^2 \vec{j}$. Here α and β are constants but only α is known. Obtain the algebraic equations that could be solved for β in order for the two robots to collide, assuming the first robot has known coordinates $x_1(t)$ and $y_1(t)$. Law or Definition **Application** Result