1. (25 Points)At t=0 a motorcycle is at a point called the origin, at rest. It accelerates along a line defined to be the x-axis with acceleration $a=\alpha+\beta t$ where α and β are known constants. A car is moving in the positive x direction with a constant velocity, v_1 . The car was at the known point x=A at the time t=0 sec. What does v_1 have to be in order for the car and the motorcycle to be at the same point when t=3 sec?

Law or Definition

Application

Result

2. (25 Points) A block of mass m is moving in the x, y plane. At t = 0 it is placed at the point \vec{r}_A and given the initial velocity of magnitude W and direction indicated by the angle θ_1 . The block's acceleration is

$$\vec{a} = \alpha \vec{i} + \beta t \vec{j}$$

where α and β are unknown constants. The time required to reach the point r_B is given to be T. Find α and β . (The length of \vec{r}_A is r_A , the length of \vec{r}_B is r_B and the angles θ_A and θ_B are all known.)

Law or Definition

Application

3. (25 Points) Two blocks, masses m_1 and m_2 , on a horizontal, frictionless surface are being pulled by a massless, unstretchable rope that goes over a frictionless pulley and is connected to a block of mass m_3 . Assumer two blocks move together. The coefficient of friction between block 1 and block 2 is μ . Find the force that block 2 exerts on block 1.

Application

4. (25 points) An object of mass m slides down an inclined plane, angle θ . The coefficient of friction between the object and the plane is μ . At t=0 a mysterious force acts on the object at the fixed, known angle ϕ as shown below. The position of the object is observed to be a function of time given by

$$x(t) = \alpha t^3 + \beta t^2$$

where α and β are known, positive constants. Find the magnitude of the unknown force.

Free Body Diagrams and Law or Definition

Application