EXAM II Physics 218 2011

Name.....Section Number.....

USEFUL INFORMATION

$$If \quad f(x) = kx^{n} \qquad \frac{df}{dx} = nkx^{n-1}$$

$$If \quad f(x) = kx^{n} \qquad \int_{A}^{B} f(x)dx = \frac{1}{n+1}k(B^{n+1} - A^{n+1})$$

$$\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{tot} \cdot d\vec{r} = \frac{1}{2}mv^{2}(\vec{r}_{2}) - \frac{1}{2}mv^{2}(\vec{r}_{1})$$

If \vec{F} is conservative:

$$\int_{\vec{r_1}}^{\vec{r_2}} \vec{F} \cdot d\vec{r} = -[U(\vec{r_2}) - U(\vec{r_1})]$$

and

$$F_x = -\frac{\partial U}{\partial x} \qquad F_y = -\frac{\partial U}{\partial y}$$

DO NOT WASTE TIME DOING ARITHMETIC

1.

2

3

4

1. (25 points) Block 1, of mass m_1 is placed at rest on block 2, mass m_2 . It is attached by a massless, unstretchable string to block 2 through a pulley. The pulley is massless and frictionless and just changes the direction of the tension in the string. The coefficient of friction between the blocks is μ_1 and the coefficient of friction between block 2 and the table is μ_2 . A unknown force \vec{F} is applied which acts in the direction shown and has unknown, positive magnitude.

a. Draw the free body diagrams for block 1 and block 2.

b. Suppose the force \vec{F} is known and large enough to cause the blocks to move. Obtain a sufficient number of equations so that you could solve the equations for the tension in the string.

2. (25 points)This is a one-dimensional problem. You need not concern yourself with the y direction.

An object of mass m is placed at the point x=0 on a horizontal table and given a velocity of magnitude v_1 to the right. The object is repelled from the origin by some mysterious force which has magnitude $\alpha x + \beta x^5$ where α and β are known constants. The coefficient of friction between the table and the object is μ .

a. How fast will the object be moving when it reaches the point x = A?

b. Suppose instead of the mysterious force being a function of position it was given by $F_x = \alpha t + \beta t^5$ where α and β are known constants. If it is given the velocity to the right of magnitude v_1 at t=0, how fast would it be going at a given time T.

3. (25 points) In a famous Physics 218 experiment it was discovered that a real spring doesn't totally follow Hooke's Law. However, instead of having $F_x = -kx$ where x is the amount stretched and the spring is unstretched at x = 0, the actual force exerted by the spring is approximately given by $F_x = -k_1x$ for x < S and $F_x = -k_2(x-S) - k_1S$ for $x \ge S$. Here k_1 , k_2 and S are known constants.

a. Given this force suppose a block of mass m starts at x = 0 with a velocity v_1 to the right on a frictionless table. Determine how far it would go before turning around if v_1 is so small that the block does not go beyond x = S.

b. Given this force suppose a block of mass m starts at x=0 with a velocity v_1 to the right on a frictionless table. Determine how far it would go before turning around if v_1 is large enough so that the block does go beyond x=S. (No Algebra!)

4. (25 points) A block of mass m is placed at rest on a frictionless table at the point x=A. It can only move along the +x axis. In addition to gravity and the force exerted by the table there are two other forces acting on the block. One of these forces is given by $\vec{F}_1 = c_1 \vec{i}$ and the second is given by $\vec{F}_2 = (-c_2 x + \frac{c_3}{x^3})\vec{i}$. Here c_1 , c_2 and c_3 are known positive constants.

a. Find the potential energy function for the force \vec{F}_1 .

b. Find the potential energy function for the force \vec{F}_2 .

c. If $c_3 = 0$ where will the block have its maximum velocity, assuming the constants are such that it begins to move to the right?