EXAM II Physics 218 2018

Last Name......Section Number.....

USEFUL INFORMATION

$$If f(x) = kx^{n} \frac{df}{dx} = nkx^{n-1}$$

$$If f(x) = kx^{n} \int_{A}^{B} f(x)dx = \frac{1}{n+1}k(B^{n+1} - A^{n+1})$$

$$If f(x) = kx^{n} \int f(x)dx = \frac{1}{n+1}kx^{n+1} + C$$

$$\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{tot} \cdot d\vec{r} = \frac{1}{2}mv^{2}(\vec{r}_{2}) - \frac{1}{2}mv^{2}(\vec{r}_{1})$$

If \vec{F} is conservative:

$$\int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r} = -[U(\vec{r}_2) - U(\vec{r}_1)]$$

and

$$F_x = -\frac{\partial U}{\partial x}$$
 $F_y = -\frac{\partial U}{\partial y}$

Errors on Free Body Diagrams will have serious consequences

1.

2.

3,

4.

1. A small block of mass m on a horizontal surface starts at the point marked x = A with velocity of magnitude v_1 to the right. The coefficient of friction between the block and the surface is μ . A force is exerted on the block which points to the right and has magnitude kx^2 , where k is an unknown constant. What must k be if the block is to have velocity $2v_1$ to the right at the point x = 2A?

Free Body Diagrams (If appropriate). Law or Definition

2. A sled of mass m_3 is sliding on an icy, frictionless, horizontal surface with velocity of magnitude v_0 . There are two riders on the sled, one with mass m_1 and a second with mass m_2 . They both decide to jump off the sled. Their horizontal velocities are known and shown below. What is the velocity of the sled after they jump?

3. The motion of a small object of mass m is observed as it moves along the x axis, starting at rest at x = A. There are two forces acting on the object. One is given by $F_{1x} = c_1 x$, where c_1 is a known constant, and another given by $F_{2x} = c_2 x^{-2}$ where c_2 is a known constant. Show that these forces are conservative by finding their potential energy functions. Use these functions to find the kinetic energy of the object as a function of x.

Free Body Diagram (If appropriate). Law or Definition

4. A spring is not stretched or compressed at the point x = 0. A block of mass, m, pushed against the spring to the point x = -A. The block is released from rest and slides on a frictionless surface. At the point marked x = B the surface changes and the coefficient of friction between the block and the surface becomes μ . At t=0, defined to be the instant that the block reaches the point x = B, a force acts on the block which points to the left and has magnitude βt . At what time will the block come to rest?

Free Body Diagram (If appropriate). Law or Definition