Problem 1: (5 points)

Write Maxwell’s equations in the integral form.
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Problem 2: (20 points)

A spherical conducting shell. inner radius A and outer radius B, is charged with charge Q,,. It
is surrounded by a conducting spherical shell of inner radius C and outer radius D, which is
charged wi&? charge -2Q,,.

\\1\ a) Find the charge per unit area on all surfaces.
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b) Find the electric field at
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¢) Sketch the electric field lines.

é) Find the difference in electnc potential between ; = () and : = o, W(0)-(0).
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d) A long. nonconducting, solid eylinder of radius R has a nonuniform volume charge density

p=cr’.
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Problem 3: (14 points)

a) Two very long parallel wires are separated by distance d (see the figure below). Current in wire
1 has magnitude i and is out of the page. . Current in wire 2 has the same magnitude 7 and is into
the page. In unit-vector notation, what is the net magnetic field at point P at distance R due to the
two currents?
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b) A negatively charged particle is injected at point P with a velocity vV = Vi,  where v, is a
constant. What constant electric field (magnitude and direction) would have to be applied for the
particle to experience no net force? Ignore gravity.
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¢) A positively charged particle is injected at point P with a velocity V =i,  where vyisa
constant. What constant electric field (magnitude and direction) would have to be applied for the
particle to experience no net force? Ignore gravity.
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Problem 4: (18 points)

At t = 0 a rectangular loop of wire with length ¥, width /4, and resistance R is located at distance d
from an infinitely long wire carrying current i, . The loop is moved away from the wire at constant

speed v,

.

a) Find the direction of the current in the loop.

Explain your answer within this box:
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b) Find the current induced in the loop as a function of time. Ignore self-inductance.
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b) Find the current induced in the loop if the loop is moving along the wire. Ignore self-inductance.
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Problem 5: (18 points)

In the circuit below the fuse has zero resistance as long as the current through it remains less than i,
If the current reaches i, the fuse “blows™ and thereafter has infinite resistance. Switch S is closed at

1=0).
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b) Find time 7, when the fuse blows.

a) Find the current as a function of time.
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¢) Redefine the moment of time when the fuse

Find the current in the circuit as a function of time

blows as =0. The current in the circuit at =0 is i,
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Problem 6: (20 points)

A single loop of wire with an area A is placed in the time varying magnetic field directed into the
page. The magnitude of the magnetic field is given by B=B;+at, where B;and a are constants and 7 is
time. The loop has a capacitor, capacitance C that was initially uncharged. It also has resistance R.

a) Starting from some famous law, derived the equation that could be solved to find the charges on the
capacitor as a function of time if the self-inductance of the loop is L. Do not solve it. Please note that
without a direction of current and charges on the capacitor indicated on the circuit the problem will not
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b) Ignore the self-inductance. Find the charges on the capacitor as a function of time.
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Problem 7: (7 points)

A capacitor is connected to a battery with I'= V, sin wt, ¥, and o are given constants. The maximum

value of the displacement current is /;. Ignore the resistance and self-inductance of the circuit.

a) What is the maximum value of the current 7 in the circuit?
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b) Find the displacement current between the plates, iy as a function of time if the distance between
the plates is & and the area of the plates is A4.
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