Problem 1: (5 points)

Write Maxwell's equations in the integral form.

$$\oint \vec{E} \cdot d\vec{S} = \underbrace{Qencl}_{\mathcal{E}_0}$$

$$\oint \vec{B} \cdot d\vec{S} = 0$$

$$\oint \vec{E} \cdot d\vec{r} = - \underbrace{\partial}_{\mathcal{E}} \int \vec{B} \cdot d\vec{S}$$

$$\oint \vec{B} \cdot d\vec{r} = \mu_0 (i + \varepsilon_0 \underbrace{\partial}_{\mathcal{E}} \int \vec{E} \cdot d\vec{S})$$

Problem 2: (20 points)

A spherical conducting shell, inner radius A and outer radius B, is charged with charge Q_0 . It is surrounded by a conducting spherical shell of inner radius C and outer radius D, which is charged with charge -2Q₀.

Find the charge per unit area on all surfaces.

$$r = A \quad \mathcal{Z} = 0$$

$$r = B \quad \mathcal{Z} = \frac{Q_0}{4\pi B^2}$$

$$r = C \quad \mathcal{Z} = -\frac{Q_0}{4\pi C^2}$$

b) Find the electric field at

i)
$$r < A$$

ii)
$$A < r < B$$

iii)
$$B < r < C$$

iv)
$$C < r < D$$

v)
$$r > D$$
 $= \frac{1}{2} \left(\frac{1}{1} \right)^2 = \frac{0}{8}$. $= -\frac{0}{4 \pi \epsilon_0 V^2}$ vad out

d) Find the difference in electric potential between
$$r = 0$$
 and $r = \infty$, $V(\infty) - V(0)$.

d) Find the difference in electric potential between
$$r = 0$$
 and $r = \infty$, $V(\infty) - V(0)$.

$$V(\infty) - V(0) = -\int_{0}^{\infty} \frac{1}{V_{11} \mathcal{E}_{0}} \frac{1}{V_{11}} = -\int_{0}^{\infty} \frac{1}{V_{11} \mathcal{E}_{0}} \frac{1}{V_{11}$$

d) A long, nonconducting, solid cylinder of radius R has a nonuniform volume charge density

a) Find the electric field at

1)
$$r < R$$

dv = 2TVE

Problem 3: (14 points)

a) Two very long parallel wires are separated by distance d (see the figure below). Current in wire 1 has magnitude i and is out of the page. Current in wire 2 has the same magnitude i and is into the page. In unit-vector notation, what is the net magnetic field at point P at distance R due to the two currents?

b) A negatively charged particle is injected at point P with a velocity $\vec{v} = v_0 \vec{l}_y$, where v_0 is a constant. What constant electric field (magnitude and direction) would have to be applied for the particle to experience no net force? Ignore gravity.

c) A positively charged particle is injected at point P with a velocity $\vec{v} = v_0 \vec{l}_y$, where v_0 is a constant. What constant electric field (magnitude and direction) would have to be applied for the particle to experience no net force? Ignore gravity.

Problem 4: (18 points)

At t = 0 a rectangular loop of wire with length W, width H, and resistance R is located at distance d from an infinitely long wire carrying current i_0 . The loop is moved away from the wire at constant speed v_0 .

a) Find the direction of the current in the loop.
 Explain your answer within this box:

b) Find the current induced in the loop as a function of time. Ignore self-inductance.

$$P = \int B \cdot dS = \int \frac{h \cdot i}{2\pi i y} \otimes \int E \cdot dr = -\frac{2}{2t} \int B \cdot dS$$

$$P = \int B \cdot dS = \int \frac{h \cdot i}{2\pi i y} \otimes \int \frac{h \cdot$$

b) Find the current induced in the loop if the loop is moving along the wire. Ignore self-inductance.

Problem 5: (18 points)

In the circuit below the fuse has zero resistance as long as the current through it remains less than i_0 . If the current reaches i_0 , the fuse "blows" and thereafter has infinite resistance. Switch S is closed at t=0.

a) Find the current as a function of time.

$$V = L \frac{di}{dt}$$
; $\frac{di}{dt} = \frac{V}{L}$; $i = \int \frac{V}{L} dt = \frac{V}{L} + Const$

b) Find time t_1 when the fuse blows.

$$\frac{V}{L}d_1 = i_0 = > \boxed{d_1 = \frac{Li_0}{V}}$$

c) Redefine the moment of time when the fuse blows as t=0. The current in the circuit at t=0 is i_0 . Find the current in the circuit as a function of time.

$$\frac{di}{dt} + \frac{R}{L}i = 0$$

$$i_{\ell}(t) = d \in \mathbb{R}^{t}$$

$$| d = i_o - \frac{\forall}{R}$$

$$| i(t) = \frac{\forall}{R} + (i_o - \frac{\forall}{R})e^{\frac{1}{2}}$$

Problem 6: (20 points)

A single loop of wire with an area A is placed in the time varying magnetic field directed into the page. The magnitude of the magnetic field is given by $B=B_0+\alpha t$, where B_0 and α are constants and t is time. The loop has a capacitor, capacitance C that was initially uncharged. It also has resistance R.

a) Starting from some famous law, derived the equation that could be solved to find the charges on the capacitor as a function of time if the self-inductance of the loop is L. Do not solve it. Please note that without a direction of current and charges on the capacitor indicated on the circuit the problem will not

b) Ignore the self-inductance. Find the charges on the capacitor as a function of time.

$$R \frac{dQ}{dt} + \frac{1}{c}Q = dA$$

$$Q(t) = Q_{SS} + QL$$

$$Q_{SS} = CdA$$

$$Q_{L} = dQ$$

$$Rd(-\beta)Q^{+} + \frac{1}{c}dQ^{+} = 0$$

$$Q_{L} = dQ^{-} + \frac{1}{c}dQ^{+} = 0$$

$$Q_{L} = dQ^{-} + dQ^{-} = 0$$

Problem 7: (7 points)

A capacitor is connected to a battery with $V = V_{\rm m} \sin \omega t$, $V_{\rm m}$ and ω are given constants. The maximum value of the displacement current is $I_{\rm d}$. Ignore the resistance and self-inductance of the circuit.

a) What is the maximum value of the current *i* in the circuit?

b) Find the displacement current between the plates, i_d as a function of time if the distance between the plates is d and the area of the plates is A.

$$i_{d} = \varepsilon_{0} \frac{\partial}{\partial t} S \vec{E} \cdot d\vec{S}$$

$$P = S \vec{E} \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$P = S \vec{E} \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$P = S \vec{E} \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$P = S \vec{E} \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$P = S \vec{E} \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} A = \frac{1}{d} S \vec{E} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{E} \cdot d\vec{S} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{E} \cdot d\vec{S} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{E} \cdot d\vec{S} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{E} \cdot d\vec{S} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{E} \cdot d\vec{S} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{S} \cdot d\vec{S} \cdot d\vec{S} \cdot d\vec{S}$$

$$E \cdot d\vec{S} = \frac{1}{d} S \vec{S} \cdot d\vec{S} \cdot d\vec{S} \cdot d\vec{S} \cdot d\vec{S} \cdot d\vec$$